Each of the eight simian hemorrhagic fever virus minor structural proteins is functionally important.
نویسندگان
چکیده
The simian hemorrhagic fever virus (SHFV) genome differs from those of other members of the family Arterivirus in encoding two adjacent sets of four minor structural protein open reading frames (ORFs). A stable, full-length, infectious SHFV-LVR cDNA clone was constructed. Virus produced from this clone had replication characteristics similar to those of the parental virus. A subgenomic mRNA was identified for the SHFV ORF previously identified as 2b. As an initial means of analyzing the functional relevance of each of the SHFV minor structural proteins, a set of mutant infectious clones was generated, each with the start codon of one minor structural protein ORF mutated. Different phenotypes were observed for each ortholog of the pairs of minor glycoproteins and all of the eight minor structural proteins were required for the production of infectious extracellular virus indicating that the duplicated sets of SHFV minor structural proteins are not functionally redundant.
منابع مشابه
Analysis of Simian Hemorragic Fever Virus Proteins and the Host Cell Responses of Disease Resistant and Susceptible Primates
African monkey species are natural hosts of simian hemorrhagic fever virus (SHFV) and develop persistent, asymptomatic infections. SHFV was previously shown to also cause a rapid onset fatal hemorrhagic fever disease in macaques. Infection of macaques with a new isolate of SHFV from persistently infected baboon sera, that showed high nucleotide identity with the lab strain LVR, resulted in vire...
متن کاملEvaluation of Crimean-Congo Hemorrhagic Fever Orthonairovirus AviTagged Nucleoprotein for Potential Application in Diagnosis
Background: Crimean-Congo hemorrhagic fever (CCHF) is an acute viral zoonotic disease, with a mortality rate of 30-50%. There is no approved vaccine or any specific antiviral treatment for CCHF; therefore, the rapid diagnosis seems to be crucial for both efficient supportive therapy and control of infection spread. In this study, the potency of recombinant nucleoprotein of virus expressed in pr...
متن کاملMolecular Detection of Crimean-Congo Hemorrhagic Fever Virus in Ticks in Qom Province, Iran, 2011-2012
Background and Aims: Crimean-Congo hemorrhagic fever (CCHF) is a zoonosis caused by a Nairovirus of the family Bunyaviridae. Infection is transmitted to humans mostly by Hyalomma ticks. This study was conducted to determine the rate of CCHFV infection in ticks in Qom province of Iran. Materials and Methods: In this study, Reverse transcription – polymerase chain reaction (RT-PCR) was used...
متن کاملIdentification of the leader-body junctions for the viral subgenomic mRNAs and organization of the simian hemorrhagic fever virus genome: evidence for gene duplication during arterivirus evolution.
Simian hemorrhagic fever virus (SHFV) was recently reclassified and assigned to the new virus family Arteriviridae. During replication, arteriviruses produce a 3' coterminal, nested set of subgenomic mRNAs (sgRNAs). These sgRNAs arise by discontinuous transcription, and each contains a 5' leader sequence which is joined to the body of the mRNA through a conserved junction sequence. Only the 5'-...
متن کاملNo Detection of Crimean Congo Hemorrhagic Fever (CCHF) Virus in Ticks from Kerman Province of Iran
Introduction: Crimean Congo Hemorrhagic Fever (CCHF) is a fatal tick-borne viral zoonosis with a case fatality rate of 5% to 30%. CCHF has been documented as the most frequent tick-borne viral infection in Iran with more than 50 cases annually. Kerman Province in the south of Iran is one of the CCHF-endemic areas of the country, but no data on infection of ticks with this virus from this area i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Virology
دوره 462-463 شماره
صفحات -
تاریخ انتشار 2014